Exercise 9

The half-life of cesium-137 is 30 years. Suppose we have a $100-\mathrm{mg}$ sample.
(a) Find the mass that remains after t years.
(b) How much of the sample remains after 100 years?
(c) After how long will only 1 mg remain?

Solution

Part (a)
Assume that the rate of mass decay is proportional to the amount of mass remaining at any given time.

$$
\frac{d m}{d t} \propto-m
$$

There's a minus sign here because mass is being lost as time increases. Change the proportionality to an equation by introducing a (positive) constant k.

$$
\frac{d m}{d t}=-k m
$$

Divide both sides by m.

$$
\frac{1}{m} \frac{d m}{d t}=-k
$$

Rewrite the left side by using the chain rule.

$$
\frac{d}{d t} \ln m=-k
$$

The function you have to differentiate to get $-k$ is $-k t+C$, where C is any constant.

$$
\ln m=-k t+C
$$

Exponentiate both sides.

$$
\begin{aligned}
& e^{\ln m}=e^{-k t+C} \\
& m(t)=e^{C} e^{-k t}
\end{aligned}
$$

Use a new constant m_{0} for e^{C}.

$$
\begin{equation*}
m(t)=m_{0} e^{-k t} \tag{1}
\end{equation*}
$$

Use the fact that cesium-137 has a half-life of 30 years to get k.

$$
\begin{gathered}
\frac{m_{0}}{2}=m_{0} e^{-k(30)} \\
\frac{1}{2}=e^{-30 k} \\
\ln \frac{1}{2}=\ln e^{-30 k} \\
-\ln 2=-30 k \ln e \\
k=\frac{\ln 2}{30} \approx 0.0231049 \mathrm{year}^{-1}
\end{gathered}
$$

Equation (1) then becomes

$$
\begin{aligned}
m(t) & =m_{0} e^{-\left(\frac{\ln 2}{30}\right) t} \\
& =m_{0} e^{\ln 2^{-t / 30}} \\
& =m_{0}(2)^{-t / 30} .
\end{aligned}
$$

Use the fact that the mass is 100 milligrams initially to determine m_{0}.

$$
m(0)=m_{0}(2)^{-(0) / 30}=100 \quad \rightarrow \quad m_{0}=100
$$

Therefore, the mass in milligrams after t years have passed is

$$
m(t)=100(2)^{-t / 30}
$$

Part (b)
The mass remaining after 100 years is

$$
m(100)=100(2)^{-100 / 30} \approx 9.92126 \mathrm{mg} .
$$

Part (c)

To find how long it takes the sample to decay to 1 mg , set $m(t)=1$ and solve the equation for t.

$$
\begin{gathered}
m(t)=1 \\
100(2)^{-t / 30}=1 \\
2^{-t / 30}=0.01 \\
\ln 2^{-t / 30}=\ln 0.01 \\
\left(-\frac{t}{30}\right) \ln 2=-\ln 100 \\
t=\frac{30 \ln 100}{\ln 2} \approx 199.316 \text { years }
\end{gathered}
$$

